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BALANCING DOMAIN DECOMPOSITION 
FOR MIXED FINITE ELEMENTS 

LAWRENCE C. COWSAR, JAN MANDEL, AND MARY F. WHEELER 

ABSTRACT. The rate of convergence of the Balancing Domain Decomposition 
method applied to the mixed finite element discretization of second-order 
elliptic equations is analyzed. The Balancing Domain Decomposition method, 
introduced recently by Mandel, is a substructuring method that involves at each 
iteration the solution of a local problem with Dirichlet data, a local problem with 
Neumann data, and a "coarse grid" problem to propagate information globally 
and to insure the consistency of the Neumann problems. It is shown that the 
condition number grows at worst like the logarithm squared of the ratio of the 
subdomain size to the element size, in both two and three dimensions and for 
elements of arbitrary order. The bounds are uniform with respect to coefficient 
jumps of arbitrary size between subdomains. The key component of our analysis 
is the demonstration of an equivalence between the norm induced by the bilinear 
form on the interface and the HI'2-norm of an interpolant of the boundary 
data. Computational results from a message-passing parallel implementation on 
an INTEL-Delta machine demonstrate the scalability properties of the method 
and show almost optimal linear observed speed-up for up to 64 processors. 

1. INTRODUCTION 

Balancing Domain Decomposition (BDD), introduced by Mandel in [24], is 
the further development of the methods proposed and studied by De Roeck and 
Le Tallec [ 17] based on an earlier work for the case of two subdomains [4]. The 
method involves the iterative solution by conjugate gradients of an interface 
problem preconditioned by the BDD preconditioner described in Algorithm 1 
of ?5 of this paper. The BDD algorithm involves at each iteration the solution 
of a local problem with Dirichlet data, a local problem with Neumann data, 
and a "coarse grid" problem to propagate information globally and to insure 
the consistency of the Neumann problems. 

In this paper, we analyze the asymptotic convergence rate of the BDD method 
for the solution of mixed finite element discretizations of the following scalar, 
second-order, elliptic problem for unknown p: 

(1.1) -V.AVp = f in U, 

(1.2) p=g on&Q. 
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We assume that Q is a polygonal domain Q c IRn, n = 2, 3, with boundary 
a O. The matrix A is symmetric and uniformly positive definite with bounded, 
measurable coefficients. The data f and g are assumed to be sufficiently 
regular, e.g., f E L2(Q), g E H Q (On). The choices of the polygonal domain 
and Dirichlet boundary conditions are for convenience; extensions to other cases 
are straightforward. 

In mixed finite element approximations to (1.1 )-(1.2) both the scalar variable, 
p, and its flux, -AVp, are approximated. Used since the 1950s in their earliest 
incarnation as cell-centered finite differences (cf. [31]), mixed finite element 
methods continue to be used in industrial problems (e.g. [18]) because of their 
inherent mass conservation properties and their high-quality approximation of 
both the scalar variable and- its flux. 

As is well known, the mixed formulation gives rise to a saddle point problem 
that is symmetric but indefinite. The BDD method, as well as many other 
effective domain decomposition techniques, is best suited for symmetric positive 
definite systems. In [22], Glowinski and Wheeler formulated the first domain 
decomposition methods for mixed finite elements. The two methods proposed 
in [22], denoted "Method I" and "Method II", are both substructuring methods 
that lead to symmetric, positive definite bilinear forms involving the unknowns 
on the interface. 

In this paper, we apply the BDD preconditioner from [24, 25] to the 
"Method II" of Glowinski and Wheeler. The role of the subdomain Schur 
complement and its pseudoinverse from [24, 25] are played by the appropriate 
mixed finite element version of the "Dirichlet to Neumann" and "Neumann 
to Dirichlet" maps. Since all the BDD method requires are subroutines 
implementing those maps, the details of mixed finite elements and the fact 
that the problem is indefinite are hidden from the BDD algorithm itself. The 
resulting algorithm can be naturally interpreted as preconditioning "Method II" 
by "Method I". 

The main theoretical result of this paper is the proof that the condition 
number of the preconditioned system grows at worst like O((1 + log(H))2) 
in both two and three dimensions and for elements of any order, where H 
is the characteristic subdomain size and h the characteristic mesh size. This 
is the same bound demonstrated for the application of the BDD method to 
a standard conforming Galerkin finite element method analyzed in [25]. In 
essence, the bounds on the condition number presented here work by reducing 
the mixed domain decomposed problem to a related conforming problem 
and applying the results of [25]. The key component of our analysis is the 
demonstration of an equivalence between the norm induced by the bilinear 
form on the interface and the HlP2-norm of an interpolant of the boundary 
data. Using similar techniques, Cowsar [15, 14] has obtained an optimal 
analysis for the classical overlapping Schwarz methods and results for other 
substructuring Schwarz methods applied to a mixed finite element formulation 
with interelement multipliers. 

The remainder of this paper is divided into six additional sections. In 
the next section, we introduce some notations and other preliminaries. For 
completeness, we discuss the mixed finite element method in ?3. Readers 
familiar with the interelement multiplier formulation of the mixed method 
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can simply skim this section to set some notation. In the fourth section, we 
formulate the equivalent problem in terms of the dual variables and analyze the 
resulting quadratic form. The dual problem is reduced to an interface problem 
in ?5 and the BDD preconditioner is introduced. In ?6, the bound on the 
condition number is derived. The paper concludes with some numerical results 
from a distributed memory message-passing implementation of the algorithm 
on the INTEL-Delta parallel computer, which confirm the theoretical bound 
and investigate the algorithm's parallel performance. 

2. NOTATION AND PRELIMINARIES 

Let 9 be a quasi-regular "triangulation" of Q with characteristic mesh 
parameter h . The elements of S9 are not limited to triangles (tetrahedra in 
3-D), but may, more generally, include various types of convex polygons. Let 
the domain Q be subdivided into nonoverlapping subdomains Ql, ..., Qk, 
each of which is the union of elements of ST. We assume the subdomains Qi 
are of diameter O(H) and shape regular; that is, there exist bijections Fi from 
a reference domain of diameter 0(1) (e.g., a square in 2D or a cube in 3D) 
onto Qi with the Jacobian DFi satisfying the following estimates uniformly in 
x.: 

(2.1) IIDF(x)IIl < CH, IIDF7-'(x)ll < CH-'. 

Here, and throughout this paper, C will denote a generic constant not 
necessarily the same from line to line, but always independent of mesh 
parameters h and H. 

We decompose the tensor A in (1.1) as 

(2.2) A(x) = a(x)A(x), 

where a is a positive function that is piecewise constant on each subdomain 
with value ai on Qi. The uniform positivity of A then implies the existence 
of constants C1, C2 > 0 such that the following bounds hold: 

(2.3) Cla,Tc4 < T A(x)4 < C2a1&Tc V8 E IRen, Vx E Q. 

Let dx denote the standard Lebesgue n-dimensional measure and ds the 
(n - 1) -dimensional surface measure. For a bounded open set to c IRn , let ItoI 
denote the measure of the set, and L2(w(t) , (L2(wo))n, Hs(t), (Hs(co))n denote 
the standard Sobolev spaces of real-valued functions defined on to. (See, e.g., 
[1, 23]). Likewise, let L2(lto) and Hs(&o) denote the usual Sobolev spaces 
defined on aco. Let H(co; div) be the subspace of (L2((0))n of functions with 
divergences in L2(O), i.e., 

H(co; div) = {v E (L2(c,))n I V*v E L2(w)}. 

Define the scaled Sobolev norms 

(2.4) 

IIuI1,2 , = l ul? 1 + 12 I 
U12 

I 
1 +2 I 1,Q~j +W-IIUIIO,Q 1 =2 IUI1/2, ftIIUII0Oof2 
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where 

iiU112 =j Iu(x)I2dx, IIU12,a = f Iu(s)12ds, 

U2 = I Vu(x)12 dx, U2 = j I u(t) u(s) 2 dtds. 1'Qi 1/2, Oni ni ni I ~t-S in 

We need to define local subspaces derived from a parent space. In general, 
having defined a parent space of functions 2'(Q) and a set a) c Q, we will 
adopt the notation 2'(cw) for the restriction of 2(Q) to co, i.e., 

(0)= {4)t0 I 4 E () 

We say that two quadratic forms dP' and df2 with the same- domain _ are 
equivalent if there exist constants c, C > 0 such that 

Cd'i(O,0 < d2 (+ 0) < Cd'i (O , 0), V E 05 

and write 

dP1 @2* 

In what follows, the constants that appear in the equivalences are independent 
of h, H and ai , but may depend on the constants in (2.3), (2.1), the degree 
of the mixed finite elements, and the regularity of the triangulation. 

3. MIXED AND INTERELEMENT MULTIPLIER FORMULATION 

In this section, we formulate the mixed finite element approximation 
for (1.1 )-(1.2) and an equivalent hybrid form by introducing interelement 
multipliers. To that end, we note that we may rewrite (1.1) as the first-order 
system 

(3.1) A-lu+Vp=0 inQ, 

(3.2) Vuu=f inQ. 

Multiplying by appropriate test functions, integrating (3.1) by parts and using 
the boundary condition (1.2), we arrive at the following weak form: Find 
u e H(Q; div) and p E L2(Q) such that 

(3.3) 

jA-u.vdx- pV.vdx=-j gv.v ds Vv E H(Q; div), 

(3.4) j V.uw dx = fw dx Vw E L2(Q). 

Let Vh(Q) and Wh(Q) be finite-dimensional subspaces of H(Q; div) and 
L2(Q), respectively, defined on the triangulation S. By the mixed finite 
element approximation to (3.3)-(3.4), we mean the pair {Uh, Ph} E V(02) x 
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Wh (Q) satisfying 

(3.5) 

LA1Uh * vdx - PhVvdx =-j gvv ds Vv E Vh(Q), 

(3.6) j VUuh wdx = fwdx VW E Wh(Q). 

For (3.5)-(3.6) to be well posed, the spaces Vh(Q) and Wh(Q) cannot be cho- 
sen independently. A well-known sufficiency condition is the Ladyzhenskaya- 
Babuska-Brezzi inf-sup condition [8]. There are many mixed finite element 
spaces defined in the literature for both two and three dimensions that satisfy 
this condition. These include the Raviart-Thomas-Nedelec spaces [28, 27], the 
BDM spaces [1 1, 9], and the BDFM spaces [10]. The analysis presented in the 
subsequent sections shall be applicable to all of these spaces. 

The mixed finite element spaces listed above admit an element-wise 
construction. In particular, they may be defined by two fixed finite-dimensional 
spaces Wh(t) C L2(t) and VhQT) c H(T; div) on a fixed reference element T 
and a family of bijective affine maps to the elements in the triangulation Y, 

IF,-b, + BTX~ : T -- T, T e S 

in the following way. Let 

Wh(T) = {p I p =, pOFT' , PE Wh(t) }, 

Vh(T) = {V I V = IdetBTV|1BTVio F-', J E Vh(T)} 
and set 

Wh () = e Wh(T) VW 1(Q) eVh(T). 
TE,' TE-7 

Let Vh (Q) be the subset of V[-1 (K) composed of functions such that the normal 
component is continuous across the boundaries of elements. The continuity 
of the normal component and the fact that Vh(T) c H(T; div) insure that 
Vh(Q) C H(Q; div). 

Recall that the above referenced spaces also have the property that 

div(Vh(Q)) C Wh(Q). 

Also for each of these mixed finite element spaces, there exists a projection 

11h:H(Q; div) n {v.Vs E L2(0T), T e 9'} -Vh(Q) 

that satisfies, among other properties, that for every T E Y and edge (face in 
3-D) ei of the boundary of T 

(3.7) J(llhU-u)-vzv.vTzds = O VV e Vh(T), 

(3.8) jV.(Lhu-u)qdx=O VqE Wh(T). 

In the presentation of the algorithm and its subsequent analysis, it will be 
convenient to present an equivalent form of the mixed problem by introducing 
Lagrange multipliers to enforce the continuity of the normal component of u 
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between elements. As in [22], an implementation needs to use the interelement 
multipliers only on the interfaces of the subdomains, where they play the role 
of the trace of p. Let Ah(Q) be the space of traces of the normal component 
of the flux on the element boundaries; that is, 

Ah(Q)= U vv-T I v E Vh(T)}. 

For g E L2(a ?), let Ag(Q) be the subset of all functions from Ah(Q) which 
attain the boundary value g on AQ in a weak sense, 

A(Q) ={A A(Q) j (A -g)Ids = 0, V E Ah(Q)}. 

The mixed problem (3.5)-(3.6) may be reformulated as finding the triple 

{Uh, Ph, Ah e VW (Q) x Wh(Q) x Ag(Q) 

satisfying for all {v, q, u} E Vh 1(Q) x Wh (Q) x AO(Q) the equations 

(3.9) ZteAf A 1(UA - vdx- fPhV-dx + fatI Ahv, ds) =0, 

(3.10) ZEe9 - -f qV-uh dx = - fq dx, 

(3.11) eT f Huh.vTds =O. 

The additional function Ah admits a simple and important interpretation. If. 
we consider the constitutive relationship (3.1) on a single element T, then. after 
multiplying by a test function and integrating by parts, we find that 

(3.12) jA-lu.vdx- jpV.vdx+J PVVT ds = 0. 

Comparing this with (3.9), we see that Ah is naturally interpreted as an 
approximation to the trace of p on the boundaries of the elements. 

Note that (3.1 1) imposes the continuity condition on the normal component 
of the flux that guarantees that Uh is in Vh( i).- The equivalence of (3.9)- 
(3.1 1) and (3.5)-(3.6) follows essentially from this fact. See [2] for a proof of 
the equivalence and more information concerning this interelement multiplier 
formulation. 

4. THE DUAL PROBLEM 

Henceforth, we shall only be concerned with the solution of the finite- 
dimensional problem (3.9)-(3.1 1) and will consequently drop the subscript h 
from Uh, Ph and Ah*. We parameterize the space Wh (Q?) elementwise by 
using a local nodal basis with nodes in the interior of elements. Likewise, 
we parameterize Ah(Q) by a nodal basis defined on the edges (faces) of 
elements of the triangulation. We denote the discrete space of nodal values 
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of Wh(Q) x Ah(Q) by 39(Q). Because of (3.12), 92(Q) has the natural 
interpretation as the space of values of the scalar variable p on all nodes, in 
the interior as well as on the edges (faces in 3D) of the elements. Since 9(Q) 
is isomorphic to Wh(Q) x Ah(Q) by construction, we may write (by abuse of 
notation) p = [p, A], and consider [p, A] elements of 9(Q). 

In a variational framework, one may eliminate the flux variable u in (3.9)- 
(3.1 1) by introducing a discretization of the flux operator AV denoted 

VA: Wh(Q) x Ah(Q), 

and defined by 

(4.1) 

Z JA- VA[q,JLIvdx= Z(x qV.vdx+J uv.v, ds) VV E VW'(Q) 

Since VW' (Q) is the direct sum of spaces defined on each element, we note 
that (4.1) holds element by element. Hence, VA [q, j] is defined elementwise 
in terms of the values of q and se restricted to T. Therefore, by an abuse of 
notation, we may consider VA as a map from Wh(w) x As (w) into VT-1(w) 
for any set w c Q which is the union of elements of 9. 

Let 

dn([p AZ], [q, h] h E A 1*A #[q, i] dx. 
T tE 

More generally, by recognizing the element-by-element nature of do(., ), 
define 

d(o[p,5 A],5 [q, A] A-1,V[p A] _VA[q, u] dx 
tEl, TCot 

for w c Q composed of elements of the triangulation .S. A problem 
equivalent to (3.9)-(3.1 1) is finding the pair 

[P 5 A E Wh (Q) X Ags(Q) 

satisfying 

(4.2) da([p A]l [q, /u)=jfqdx V[q, ,] E Wh(2) x A*(Q). 

The flux may be recovered by u = -VA[p, A]. The bilinear form dQ(.,*) is 
obviously positive semidefinite. The strict positivity is a simple corollary to 
Theorem 4.1 below. A detailed discussion is given for the case of the Raviart- 
Thomas elements in [2] and [7]. 

The following theorem is the main result of this section. It spells out the key 
observation that the quadratic form d(p, p) is equivalent to a discretization of 
the form fa cI Vpt2 dx, which will allow us to use the theory for the conforming 
case with only a few changes. 
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Theorem 4.1. Let p^ = [p, ,A] E Wh(c) x Ah(O) for w c Q composed of 
elements of the triangulation 9-, and a, = a,,; then 

(4.3) deo(fi, fi) E a 1rTl1-21n E p^(ni)-^(nj))2 
tE?- , tCwco nodes: 

ni, nj E t 

with constants independent of h, a, and Iol. 

The proof of Theorem 4.1 is a direct consequence of the following two 
lemmas. 

Lemma 4.2. The kernel of d(.,*) consists of the constant functions on f, i.e., 

(4.4) dr([p A],~ [q, A] V [q, A] E Wh(T) x Ah(T), 

if, and only if, [p, A] has the same values on all nodes of -. 

Proof. We first check that if [p, A] is some constant K on T, then it is in the 
kernel of dT(., .). Letting v = VA [q, ,] E Vh(T), we see that 

(4.5) dT([p, A], [q, /u) = JA 1VhA[p A] Vdx 
h 

= -j pV.v dx+j + V.lVT 

K [-jV.vdx+j v.vzds], 

which is zero by the Divergence Theorem. 
To prove the converse, let [L, A] E Wh(T) x Ah(T) be such that 

(4.6) d([,)A], [q,]) =0 V[q,fl]E Wh(T) xAh(T). 

It is enough to show that [j3, A] is zero if it is orthogonal to constants, i.e., 

(4.7) jKpidx + j Kids=O VKEIR. 

By (4.6), 

JA 1V7[i, A] V[, A]dx = 0; 

and hence, 

(4.8) VA[fi, A] = 0. 

Since (4.7) holds, there exists a solution q (unique up to a constant) satisfying 
the following Neumann problem: 

(4.9) -A p=j inT, 

(4.10) VqS. = i on 9T. 
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Setting v = fllhVk and using properties (3.7) and (3.8), we see that v E Vh(z) 
with V.iv = -p and V >v = . Hence, using v in (4.1) with (4.8), we have 

(4.11) O= - jI3V dx + j Iv, ds = J12dx + j2ds; 

therefore, [L, A] is zero. 0 

The proof of the following lemma was suggested by Joseph Pasciak. 

Lemma 4.3. Let p = [p, A] E Wh(T) x Ah(T) and aT = aIT; then 

(4.12) dT(p^ p^) a TIT (fr(n1) -fi(nj))2, 
nodes: 

ni, nI E t 

with constants independent of the mesh parameter h and ax. 

Proof. Let - denote the reference element, Wh(t) and Vh(-) the reference 
spaces, and FT(x) = bT + BTx the affine map mapping - onto T introduced in 
?3. For [ E, ,u e Wh(t) x Ah(O), define V^h[, l] E VhQ1) by 

(4.13) JVh[4 l] . idx =-J qVidx + J iv i vt ds W E Vh(i). 

Using Lemma 4.2, one has 

(4.14) jvh[q, i] Vh[q, j]dx ([4, f](nj) - [q, g](nj))2, 
T nodes: 

ni, nj E I 

since both quadratic forms induce norms on Wh(f) x Ah(t) modulo constant 
functions with equivalence constants depending only on the reference element 
and choice of mixed finite element space. 

Letting JT = IdetBTI, define the following functions on the reference 
element: 

p=poF, A =o oF, i=(JTB-71VA[p,A])oF, A=AoF. 

Under this change of variables for the mixed finite element spaces (cf. [30, 12]), 
we have ii E Vh (t) satisfying 

(4.15)1 BtA-IBTii * vdx =-| JV.vdx + j, -. vi ds W E Vh(T), 
~JTT 

and 

(4.16) dT(, P) = jA1VA[p, A]. VA[p, Al dx = BJ }BA1Bii iidx. 

Comparing (4.13) and (4.15), we see that 

JJBtA1BT ii* .idx =Vh, A] * vdx E Vh(i); 

hence, 
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(4.17) |J BtA1-Biir ii dx < C2arJr I I B112 JVhL5 ,] VhU, A]dx, 

(4.18) J BtA1B-ii. iiudx > CaJrJrIBIBrL2 Vh11, ,2]Vh[, ] dx, 

where Cl and C2 are defined in (2.3). 
The proof of the lemma is completed by using (4.14), (4.16), (4.17), (4.18), 

and the following estimates, which hold uniformly for z E 9, owing to the 
regularity of the mesh (cf. [ 1 3]): 

Jr = <T|/|t|, IIB-rI < CHI/T , IIBTi? CLrI-l.n 

5. BALANCING DOMAIN DECOMPOSITION 

In this section, we reduce the dual problem (4.2) to a problem in terms of the 
variables on the subdomain boundaries using a standard nonoverlapping domain 
decomposition technique. We then consider the BDD method applied to this 
problem on the interfaces. That is, we study the iterative solution by conjugate 
gradients of the reduced problem preconditioned with the BDD preconditioner 
defined by Algorithm 1 below. 

5.1. Reduction to an interface problem. We will need some additional notation 
related to the spaces of functions defined on the interfaces. With the domain 
Q partitioned into nonoverlapping subdomains Qi, we let J denote the set 
of internal interfaces 

k 

u a= \ an\0. 
i=1 

Let Ah(9Qi) denote the degrees of freedom associated with aQi \ aQ, and let 
Ah (J) denote all the degrees of freedom on the subdomain interfaces. Define 
mappings Ni : Ah(aQi) -* Ah (>) by extension by zero, i.e., for Ai E Ah(aQi), 
define NiAi E Ah(Y) by 

(5.1) NiAi(x) = {i(X) if x tEwi AQ 
O otherwise. 

Note that its adjoint NiT: Ah() - Ah(&Qi) is defined by NiTA = A|ani\an 
Define bilinear forms si: Ah(aQi) x Ah(aQi) -` R and corresponding linear 

maps Si Ah(aQi) -* Ah(aQi) by 

(5.2) s1(1, Hi) = J (SiAi)yi ds = dn, (-i()), -i(/ti)), 

where fi (Ai) E Wh(Q Px Ah(Qi) satisfies 

(5-3) P(R)= on aQi\aQ, 

(5.4) PI(AI) = 0 onai n aQ, 

(5.5) d,(pi(Al)), q) = 0 VqiE Wh(QI)x Ax(Q 
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Define the bilinear form s: Ah(>) x Ah(>) IR and linear map S 
Ah(Y) Ah (AJ) by 

k k 

(5.6) s(2, ,u) = E si(Nif, Ni,l), S = i NiSTN. 
i=l i-l 

The method of this paper solves a reduced problem SA = g corresponding 
to the interface unknowns which, in variational form, may be written 

(5.7) s(q, A) = G(u). 

The right-hand side is defined by 

(5.8) G(u) = E 3 (i, fi(NTyu)), 
i=l, .7k 

with ' 
(N7Tji) defined as in (5.3)-(5.5) and Pi satisfying 

)5 9) 0 on ani (99 

(5.10) Pi =g on a0i n a& , 
(5.1 1) 

dai(P, [qi, ui]) = jfqidx V[qi, ji] E Wh(f2i) x A'(0i). 

The solution to the original problem is recovered by setting 

[p 5 Ai]i = PMAOi + Pi, U v =-h[ ] 

The interface bilinear form s is symmetric and positive definite, cf. [16]. In 
fact, S defined in (5.6) is nothing more than the Schur complement of the 
unknowns Ah(>J) in the matrix corresponding to the bilinear form d. 

The maps Si are more easily evaluated by realizing that they are evaluation of 
the "Dirichlet-to-Neumann maps" for the mixed finite element method [22, 161 
defined by 

(5.12) SiAi = -uiV, 

where {ui, Pi} E Vh(92i) x Wh(ni) solves the Dirichlet problem 

(5.13) 

j A-1ui vdx - piV*vdx = - j iv*vds VVEVh(Qi), 

(5.14) j V.uiq = 0 Vq E Wh(Qi). 

In the algorithm presented below, we will also need to solve problems of the 
form Si>i = ri, or, in variational form, 

(5.15) si(Ai, ji) =-j riuids V/ EAh(aQi) 

These correspond to evaluations of the "Neumann-to-Dirichlet maps" ri F- Ai, 
which we implement by first solving the following Neumann problem for 
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{ui, Pi} E Vh(Qi) X Wh(Qi) such that 

(5.16) uiv = ri on aQi \ a, 

(5.17) |V.uiq = 0 Vq E Wh(Qj), 

(5.18) A-'ui * vdx - 
J piVvdx = 0 

Vv E Vh(Qi)n{v.v = 0 on aQi n A21, 

and then defining Ai E Ah(aQi) by 

(5.19) j Y idids =- Aui Pvdx+j piVvdx, 

where v is any element in Vh(Qi) such that v.v = pi. See [22] for details. 

5.2. The BDD preconditioner. The BDD preconditioner for (5.7) makes use 
of a collection of weighting maps Di that form a decomposition of unity on 
Ah(J), i.e., 

k 

ZN1Di NITA = A VA E Ah(J). 
i=l 

Additionally, it uses spaces Zi c Ah (CQi) such that 

(5.20) Ker(si) ={2i E Ah(C)Qi) I si(Qi, ji) 0 Vji E Ah(aQi)} C Zi. 

For the scalar second-order elliptic problems we consider in this paper, Ker(si) 
is empty if there is Dirichlet data imposed on any part of aQi n aQ; otherwise 
it is the set of functions that are constant on &90. We note, however, that 
Zi may be any superset of the kernel. From the Zi's, define a "coarse space" 
AH(J) by 

k 

(5.21) AH(J) = {2. E Ah(>) =Z NiDiCi, i E Zi}. 
i= 1 

We say that p E Ah(J) is balanced if p is orthogonal to AH(J); that is, 

(5.22) JPlHds = 0, V4H E AH(J>) 

The process of replacing an unbalanced p by a balanced pbal = p 
SPH, PH E AH(>J) will be called "balancing". Note that PH may be 
determined by solving a problem over the "coarse space" AH(J), 

(5.23) S(PH, ii") = J P4UH ds Vu,uH E As(J>). 

The action of the BDD preconditioner Mbal is defined by Algorithm 1. 

Algorithm 1 (BDD Preconditioner). Given p E Ah(J), compute MIJp as 
follows. Balance the original residual p, i.e., let pl E A1(JI) be the solution 
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to 

(5.24) S(PH, UH) = J PUH ds VILH E AH(J) 

and set 

(5.25) pbal = p- SPH 

Find any solutions Ai E Ah(&f2i) for each of the local problems 

(5.26) si(li, ji) = DTNPbaui ds Vjui E Ah(aQt) 

and set 

(5.27) ,= E NiDili 
i=l,... ,k 

Balance the auxiliary problems by solving 

(5.28) S(2H, lH) = JjU p ds - s(A, AH) VUH E AH(g). 

Set M-IJp=-1+)1H. 0 

In practice, the residual of the initial approximation should be balanced first 
as in (5.28); then the first balancing step (5.24) in every iteration can be omitted 
since the residual p received from the conjugate gradients algorithm is already 
balanced. 

In [24], it was proven that Algorithm 1 implements a well-defined operator 
that is symmetric and positive definite. The following abstract bound on the 
condition number of the preconditioned system follows from the proof of 
Theorem 3.2 in [24]. (The statement of the theorem in [24] is correct only 
in the case Zi = Ker(si).) 

Theorem 5.1. The map Mb-al Ah(J) -+ Ah(J) defined in Algorithm 1 is 
symmetric, positive definite and is such that 

cond(Mbal, S) = Amax(Mba_'S)/Amin(MbNaS) < K, 

where 

(5.29) K = SUP { z ( j 
N#D1 N 

i ? NED1) I 

Ai E AO(O); J 1iCi ds = 0, V4i E Ker(si); 
Qj\aue 

Si(Ai, Ci) = O, VCi E Zi} 

The following lemma is a simple consequence of Theorem 3.3 in [251. 
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Lemma 5.2. For subdomain Qi, define the weighting map Di as multiplication 
by edgewise (facewise in 3-D) constants, 

(DiAi) (x) = +i -i(X), x E aQi n afl , 

and assume that there exists a number R so that 

(5.30) -sj(N1TN-A-, N1TN1A)) < - R si(i, )i) 

for all i, j = 1,... , k and all Ai E Ah(aQi) such that f0,\,,)iCids = 0, 
VCi E Ker(si), and si(A1, 4j) = 0, VCi E Zi. Then there exists a constant C not 
dependent on h, H or R, so that K in Theorem 5.1 satisfies the bound 

K< CR. 

6. DERIVATION OF THE CONDITION NUMBER ESTIMATE 

For a subset wi c Q composed of elements of g9, we will continue to 
associate with the pair [p, A] E Wh(w) x Ah(w) a function p E (w) defined 
at the nodal points of the mixed finite element discretization. In particular, for 
a node ni of T c a), 

p-(n ) = f(ni) if ni E Tr, 
p(ni) otherwise. 

In Theorem 4.1 of ?4, we have shown that the mixed finite element 
discretization of (1.1)-(1.2) over a region Qi gives rise to a quadratic form 
equivalent to 

Mi(fr,fP) =a Zti E zI112In Z (fr(nj)-fr(n1))2. 

TE9 , xCni nodes: 
ni, ni E T 

In this section, we will use this fact to show that 

Si(Ai, ii) ai th ,i I/2, aQn 1 

where I9nli is an interpolation operator defined below. Exploiting this 
equivalence, we will derive a bound on the condition number of the interface 
problem preconditioned by the BDD preconditioner similarly as in [25]. The 
key ingredient in both the definition of the interpolation operator and the 
subsequent proof of the equivalence is to relate the mixed finite element 
discretization to a conforming approximation on a related mesh. 

6.1. A conforming equivalence. Given an element z E , let 8, be a quasi- 
regular subtriangulation of z such that the vertices of the subtriangulation 
include the vertices of z and the nodal points in z pertaining to the degrees 
of freedom of Wh (T) x Ah (T). Note that such a subtriangulation need only 
be constructed on the reference element t and then may be mapped to the 
individual elements. Several examples are given in Figures 1 and 2. 

It will be useful to partition the vertices into two sets. A vertex of '9' will 
be called primary if it was a nodal point of T . Otherwise, we shall call the 
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* Primary Vertex 
o Secondary Vertex 

- Original Edge 
New Edge d 

Raviart-Thomas Brezzi-Douglas-Marini 
Lowest Order Lowest Order 

FIGURE 1. Examples of subtriangulations of two commonly 
used elements 

/(~~~~~ . 

-- 

* Primy Vertex 
o Seondary Vertex 

Original Edge 
New Edge 

FIGURE 2. Parti'al subtriangulation of the lowest-order Raviart- 
Thomas-Nedelec elements 

vertex secondary. The union of such subtriangulations gives nrse to a refined 
triangulation of Q which we denote by 

Using standard terminology, we will say that two vertices of the triangulation 
S are adjacent if there exists an edge of T connecting the vertices. 

Let Uh (LI) be the space of continuous piecewise linear functions subordinate 
to the triangulation -. For a subdomain Qi define Uh k(Li) and Uh(O 9ii) by 
restriction, i.e., 

Uh(fi) = {fUlif I U e Uh(Q)}, Uh(aQi) = {uI1aQ I u E Uh(?)}. 

Note that the functions in Uh(Qi) are naturally parameterized by the values 
they attain at the vertices. We may define a mapping 'li into Uh(Qi) for any 
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function q defined at the primary vertices contained in S2i by 

(6.1) 

O(x), if x is a primary vertex; 

the average of all adjacent primary vertices on the 
boundary of fi, if x is a secondary vertex on the 

IfLq5(x) - boundary; 

the average of all adjacent primary vertices, if x is a 
secondary vertex in the interior of 52i; 

the linear extension of vertex values, if x is not a vertex of 9'. 

Since I'i is defined for any function defined at primary vertices, by an abuse 
h~~~~~~~~~ of notation, we may understand If" s a from Wh(S2X) x A*(2)it 

Uh (5i), a map from 6k(Qi) into Uh (Qi), and a map from Uh(02i) into 
Uh (i) . 

Let hat be the mapping into Uh(aQi) for functions defined on the primary 
vertices contained on the boundary of Qi, by I"'A = (I2'ip)InO where p is 
any element of 9(52i) such that AI>Q = A. This map is well defined since 
the boundary values of elements in In2ip depend only on the values of p 
at the primary vertices on the boundary. Finally, let Uh(ili) c Uh(Qi) and 
UhO(O2) c UC ( Oi) be the range of IhQi and I . respectively; that is, 

h h setvl;ta s 
Uh(i) = = I= ih', X E Uh(Qi)}, Uh(Oi,) = {YIaQ,IY' E Uh(Ki)}. 

Recall that for kE Uh(i), 

(6.2) 101, E ITII2/n E ((V,) -_(Vj))2 

TE.T CQ, vertices: 
Ili .Vj E T 

(6.3) ITIll Oi 1 (V,)2. 
0 aj E~~~~1 ~ 

TE.J, TC Q, vertices: 
vi E T 

Using these equivalences, we now show that the Ih"'-projection is stable in 
HI (S2i) . 

Lemma 6.1. There exists a constant C > 0 independent of h and IDil such 
that 

(6.4) In'Q5I ij, < CIq11,n, Vq E Uh(Qi), 

(6.5) IIn'0'kI1o,0, < CIIkIIOS, Vk E Uh(2i). 

Proof. We first consider the stability of the H'I-seminorm. Differences involving 
a secondary vertex and adjacent primary vertices can be bounded from 
differences involving the adjacent primary vertices as follows. If Vn+ is a 
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secondary vertex with adjacent primary vertices vI, ..., vn, and denoting 
qj = 0q(vj), then 

(6.6) (q$n+1 -q$1)2 =( =i = Oi (?IOi ) 0 
(6.6) ( j=1 

n 

< n E(,j _ 0i)2, 
j=1 

by the Cauchy-Schwarz inequality. Since there is some maximum fixed number 
of secondary points per element, (6.4) now follows from (6.2). The stability 
in the L2-norm is proven similarly using (6.3) and the inequality 02, < 
I En=l ?I, proved analogously to (6.6). o 

6.2. Technical preliminaries. In this section two technical lemmas are proven 
that play an important role in the proof of the condition number bound. 
Lemma 6.2 demonstrates the equivalence between the H' -norm of the discrete 
harmonic extension in the space Uh(Qi) and the H1/2-norm of the boundary 
values. Similar results for the conforming space Uh (Qi) are well known; 
see [5, 33], or [25]. A separate proof is required here since, in general, 
Uh (Qi) :$ Uh (i)* 

Lemma 6.2. For E e Uh(aQi) 

(6.7) inf [+lI i~1Xll2,Q 
E Uh(Qi) 

(6.8) inf +l.Qi 112. i 
q E Uh(Qi) 

Proof. By the standard Trace Theorem (see e.g. [26]), there exists a C > 0 such 
that 

(6.9) IkII1/2,0a0i < C110111,ni V/ E H'(Qi), with Oiai = 0. 

Therefore, it is now enough to show that there exists a C > 0 such that for all 
q E Uh(OQi), there exists an extension qE E Uh(Qi) satisfying q$Ea = 0 and 

(6.10) 1 1,Qi < Cllk12,.- 

By the extension theorem of Widlund [32], there exists a C > 0 independent 
of q and q E Uh(Qi) satisfying OloQn = q$ and 

Taking qE = I_i q and using the H' -stability of 47' proven in Lemma 6.1, we 
have that 

(6.12) ||OE||I Q2i _ C110111'nQ 

_ Ckb11112,aij, 

which proves (6.7). 
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The equivalence of the seminorms follows from (6.7) and the equivalence 
of the H1(Qi)-norm to the H1(Qi)-seminorm and the Hi(OMi)-norm to the 

Hi(OQi)-seminorm on the spaces HI(Qi) n {If (bds = O} and H a(OQ>) n 
{If,q ds = O}, respectively, cf. [25]. o 

Lemma 6.3. There exists a constant C > 0 independent of h and Inil such 
that 

(6.13) IIIf1411/2,0i < Cq10112,80i Vo e Uh(OQi). 

Proof. Let q E Uh(ni) such that qia5i = 0. By the standard Trace Theorem 
and Lemma 6.1, we have 

11 h *111/2, ni < CIII ih 1l, Qi < 01011l1, 0i- 

The proof is completed by taking the infimum over the set of q E Uh(Qi) such 
that X = q since for E E Uh(d2i), 

inf jjq5jj1,Q -k1/2,aQi 
0 E Uh X) 

see [32]. a 

The following lemma is essentially Lemma 4.3 of [6] except that the support 
of qj is not wholly contained in a 0i n a Qj but rather in a region overlapping 
neighboring faces of iMj by 0(h). 

Lemma 6.4. Let q5i E Uh(aOni), and define qj E Uh(dij) by 

on- Oi ~~onOa 2i n iMj, 
Xi=Ih Io, where = on aQj \ \O i. 

Then there exists a C > 0 independent of H and h such that 

(6.14) 1I4iIj /2,aQ < C(1 +log (Hlh))211ki0j112 (n 

Proof. By Lemma 4.3 of [6], we have 

IIl41/2,da1 ? C( 1 + log (H/h))2110,11i2,2 1. 

By Lemma 6.3, 

IkPli11/2,a1 = IIIh 'kII1/2,Vnj < Cl11/2,0nj 

and so the lemma is proven. o 

6.3. Condition number bound. The following theorem states the equivalence 
of the discrete seminorm defined by si and the H (di2i)-seminorm of the 
boundary interpolant. A similar relation for the conforming spaces (without 
the need of an auxiliary interpolant) is the cornerstone of most substructuring 
domain decomposition theories; see, e.g., [5, 33]. 
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Theorem 6.5. There exist constants c, C > 0 independent of h, H and ac 
such that for all Ai E Ah(9Qi) 

(6. 15) aticlIal iA.l1112 690- < si(Ai, Ai) 2 69 II*Qi 

Proof. By a direct computation using definition (5.2), 

(6.1-6) si (Ai, Ai) =ihZf( )do, (, p) 
p~ E Y(Oi) 

) 

P~iaai = l 

By Theorem 4.1 and (6.2), 

(6.17) dai(p, p) h II iPI,Qi 
where we bound terms involving secondary vertices as in the proof of Lemma 6.1 
and terms involving the differences of primary vertices of z E 9' by the sum of 
differences of nodes in 97. The lemma follows by taking the infimum of (6.17) 
over aui = Ai and using Lemma 6.2, since 

(6.18) si(Ai, Ai)= inf duj(?,fP) 
p E Y(Oi) 

p 

P?laai = Ai 

inf Ctii lpIh Pl, ai 
p E Y(Oi) 

diaui =i2 
- caiI gI*8iIi |/2, a(. 0 

Using the equivalence in the previous theorem, we may now prove a bound 
on the condition number of the preconditioned system. 

Theorem 6.6. The interface operator S preconditioned by the BDD precondi- 
tioner Mbal defined in Algorithm 1 has a condition number K satisfying the 
bound 

(6.19) K < C(1 + log (H/h))2 

in both two and three dimensions with the constant C independent of h, H and 
ai. 

Proof. For our mixed spaces, there are no vertex degrees of freedom in two 
dimensions and no vertex or edge degrees of freedom in three dimensions. 
Hence, NTNi = 0 unless Qi and ?Qj share an edge in two dimensions or a 
face in three dimensions. For Ai E Ah(OQi), NTN Ai E Ah(OQj) is defined by 

(NTN A )(x) =Ai(X) if x E ai, n 
aij, (NN 

0~(x {I)otherwise. 

By Theorem 6.5, we have 

(6.20) m (NmTNa6.4 , NwNes) < ajceIe J(N i I 2, t hja 

Using Lemma 6.4, we see that 
(f~~0. 

NA,1 I0 ( NN .2 < )) f nP{/A211 
00 i ;12 
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Hence, with another application of Theorem 6.5 and using the fact that 
IIu111/2,80j < CjuI112,OQj for all u orthogonal to Zj, cf. [25], we conclude 
that 

(6.22) sj(NfN)A, NfTNiAi) < Caj(l +log (H/h))2s(A, Ai). 
a, 

The proof is completed by appealing to the bound in Lemma 5.2. o 

7. NUMERICAL EXPERIMENTS 

In this section we describe several numerical examples obtained using both 
a sequential and a parallel implementation of the BDD algorithm described in 
?5.2. The sequential implementation used the FORTRAN 77 code bdd available 
from MGNET by anonymous ftp to casper. cs. yale. edu in the directory 
/mgnet/jmandel. The code invokes user-supplied subroutines that implement 
the matrix-vector multiplications Si)i and solution of the possibly singular 
systems Si)i = ri. These subroutines were implemented by solving appropriate 
mixed problems in subdomains, cf. ?5.1 of this paper. 

The parallel implementation was written using the distributed memory, 
message-passing paradigm. The message-passing was implemented in PICL 
[ 19] to provide some degree of portability among message-passing architectures. 
The timing results presented here are from runs on the INTEL-Delta machine 
located at Caltech. In both the sequential and parallel implementations, existing 
sequential code was used to solve the elliptic problems on the subdomains. 

In three experiments we consider the solution of the following elliptic 
problem on the domain Q C 1R3 with boundary an = a&KD U aQN: 

(7.1) -V.a(x)Vp=f inQ, 

(7.2) p = gD on &2D, 

(7.3) -Vp.v = gN on AIN. 

Equations (7.1)-(7.3) were discretized using finite differences which is the 
lowest-order Raviart-Thomas-Nedelec space defined on rectangular solids in 
3D with quadrature [31]. In all of our experiments, the mesh spacing in each 
coordinate direction was uniform and the spaces Zi in (5.20) were chosen 
as the constant functions on afi regardless of external boundary conditions. 
The initial guess of the solution was zero and iterations were continued until 
a reduction of 10-6 was achieved in the 12-norm of the relative residual. 
The estimates of condition number were obtained by exploiting the similarity 
between conjugate gradients and Lanczos' method for finding eigenvalues using 
the code of Ashby, Manteuffel and Saylor [3]. 

The first two experiments were designed to test aspects of the condition 
number bound given in Theorem 6.6. The domain Q2 was taken to be the 
unit cube with Dirichlet data imposed on the faces with normals parallel to the 
first coordinate axis. The functions f, gD, gN were chosen such that 

p(x, y, z) = (cosh(7r(l -y)) -tanh(r) sinh(7r(l - y))) cos(7rx). 
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TABLE 1. Test Problem I, Laplace's equation 

num. of decompo- BDD CG, 
._h domains sition . cond.] iter. cond. J inter. 

1/8 8 2x2x2 1.85 7 3.15 10 
1/8 64 4x4x4 1.48 7 7.63 16 
1/8 512 8x8x8 1.00 1 18.65 18 

1/16 8 2x2x2 2.54 9 6.05 15 
1/16 64 4x4x4 2.17 9 14.93 23 
1/16 512 8x8x8 1.49 7 30.65 34 
1/32 8 2x2x2 3.40 11 11.99 20 
1/32 64 4x4x4 3.09 11 29.81 31 
1/64 64 4x4x4 4.21 14 73.20 49 

TABLE 2. Test Problem II, discontinuous coefficient 

h Inum. of] 
decompo- BDD l CG 

h domains sition cond. l it_er.- cond. TIinter. 
. 1/8 64 4x4x4 1.46 6I 27.441 19 

1/16 64 4x4x4 2.15 8 54.48 28 
1/32 64 4x4x4 2.99 10 122.10I 41 

I 1/64 64 4x4x4 . 4.091 12 267.861 59 

Table 1 and Table 2 compare the performance of the nonpreconditioned and 
balanced preconditioned conjugate gradient method on the Schur complement 
system (i.e., the interface problem) in terms of condition number. Test Problem 
I is Laplace's equation with a(x, y, z) =1. Test Problem II has a coefficient 
that is piecewise constant on each subdomain and varies in magnitude from 
10-48 to 1064. In particular 

f 10-ijk if i + j + k is odd, 
a(xy, ' zY)= 1 01ik if i + i + k is even, 

where i = l+ 4xj, j = 1+ 4yj, k = L1 + 4z], and Lxl is the greatest 
integer not greater than x. 

As illustrated in Figure 3 (next page), the use of the BDD preconditioner 
greatly reduces the condition number of the interface system. By analyzing 
the data in Table 1, we see that the interface system without preconditioning 
experiences a growth in the condition number like 1/h as predicted by the 
theory in [16]. The condition number of the unpreconditioned system also 
grows with the number of subdomains, but not as strongly as 1/H2 as predicted 
in [33]. Figure 4 (next page) shows that the condition number of the balanced 
preconditioned system grows like (1 + log h)2. By comparing the results of the 
two tests, we observe that the convergence rate is independent of the jumps in 
the coefficients as the theory predicted. 
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Summary of Numerical Experiments 
35 1- 

* BDD: Laplace Equation 

* BDD: Discontinuous Coeff. 

Schur: Laplace Equation 

26 5 Schur: Discontinuous Coeff. 

18 

0 

9.5 _b~~~~~~~~~~ U 

0 7.5 15 22.5 30 

(1 + Log (H/h))2 

FIGURE 3. Scatter plot of results from Test Problems I and II 

Summary of Numerical Experiments 

* BDD: Laplace Equation 

* BDD: Discontinuous Coeff. 
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=3_ 

u 

.0~~~~~~~~~~ 

2 _ 

0~~~~~~ 

) ~~~~7 .5 I 5 22.5 30 

(I + Log (H/h))2 

FIGURE 4. Scatter plot of results from Test Problems I and II: 
BDD results only 
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Log Permeability at Z = 0.09 

MINIMUM 

-2.00 

0.5~~~~~~~~~~~~~~~~~~~~~~23 

0 0.25 0.5 0.75 1 

X-AXIS 

FIGURE 5. Coefficient of Test Problem III 

To evaluate the parallel performance of the BDD algorithm, we consider 
a model "industrial-type" problem arising from the pressure equation in one 
time step of a miscible flow simulation with mobility ratio of 100, see [29]. 
In this test problem, the domain was Q = (0, 1) x (0, 1) x (0, 1/8) and was 
discretized with a grid with 128 x 64 x 8 elements. The aspect ratio is typical 
of porous media flow problems. The coefficient a(x, y, z), a cross section of 
which is depicted in Figure 5, varies over five orders of magnitude in the entire 
domain. The number of unknowns in this problem is chosen to be relatively 
small to allow the problem to fit on a small number of processors. The run 
times are tabulated in Table 3 and depicted in Figure 6 (next page). Motivated 
by the work in [16], we used a generalization to the prescription of weighting 
functions in Lemma 5.2, choosing functions Di so that for x E ni n j 

Di(x) _ limY-X,YEQ, a(y) 
Dj(x) liMY_,XYEjjj a(y)' 

We note that the unpreconditioned interface problem did not converge in 200 
iterations for any of the decompositions listed in Table 3 and had an estimated 
condition number in excess of 105 . 
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TABLE 3. Test Problem III, miscible flow problem 

1 Number of Decompo- T Run Time J J Cond. 
Processors sition (secs) | Iter. | Est. JJ 

16 8x2x1 69.17 25 29.52 
16 4x4x1 59.19 15 13.43 
16 4x2x2 84.10 37 76.89 

32 8x4x1 33.13 22 18.86 
32 4x8x1 16.10 19 14.06 
32 4x4x2 22.80 34 57.07 
32 2x2x8 88.08 157 1532.49 

64 8X8x1 7.90 17 9.26 
64 8x4x2 14.34 46 80.87 
64 4x2x8 53.50 188 1749.38 

128 16x8x1 4.56 17 9.47 
128 8x8x2 4.32 26 32.30 

256 16x16x1 3.98 17 12.45 
256 16x8x2 4.60 22 13.98 

Summary of Numerical Experiments 
100 . ,,, . ,, 

" * - U Delta Run Time 

Optimal Slope 

10 

8 16 32 64 128 256 512 

Number of Processors 

FIGURE 6. Scaling of the BDD algorithm 
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Before addressing the performance of the parallel implementation, it is 
important to note that domain decomposition algorithms change with the 
decomposition chosen for the subdomains. For instance from the condition 
number estimates in Table 3, we see that the decompositions that give rise to 
subdomains with better aspect ratios perform better. As more processors are 
added, the dimension of coarse space AH(>J) in (5.21) grows, as does the 
work required to solve the balancing problem (5.23). We see in Figure 6 the 
characteristic performance curve for domain decomposition algorithms. There 
is a region on a moderate number of processors where a faster than expected 
decrease in run time is observed, owing to the subdomain problems becoming 
easier to solve. Eventually, the subdomain problems become so small and the 
coarse problem becomes so large that the time for the coarse grid solve and 
message passing overhead dominate the run time. For our small test problem, 
we observe superlinear speed-up between 16 and 32 processors, near perfect 
linear speed-up between 32 and 64 processors, and degenerating speed-up for a 
larger number of processors. 

8. ACKNOWLEDGMENTS 

The authors appreciate access to the INTEL-Delta provided by the Center for 
Research on Parallel Computation. During the time of this research, Lawrence 
Cowsar and Mary Wheeler were supported by NSF grant DMS-9112847 and 
DOE grant DE-FG05-92ER25142, and Jan Mandel was supported by NSF 
grants DMS-9015259, ASC-9121431, and ASC-9217394. 

BIBLIOGRAPHY 

1. R. Adams, Sobolev spaces, Academic Press, New York, 1975. 

2. D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: 
Implementation, postprocessing and error estimates, RAIRO Model. Math. Anal. Numer. 
19 (1985), 7-32. 

3. S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, A taxonomy for conjugate gradient methods, 
SIAM J. Numer. Anal. 27 (1990), 1542-1568. 

4. J. F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu, Variational formulation and 
algorithm for trace operator in domain decomposition calculations, Proc. Second Internat. 
Sympos. on Domain Decomposition Methods for Partial Differential Equations (T. Chan 
et al., eds.), SIAM, Philadelphia, PA, 1988, pp. 3-16. 

5. J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic 
problems by substructuring. I, Math. Comp. 47 (1986), 103-134. 

6. , The construction of preconditioners for elliptic problems by substructuring. IV, Math. 
Comp. 53 (1989), 1-24. 

7. S. C. Brenner, A multigrid alorithm for the lowest order Raviart-Thomas mixed triangular 
finite element method, SIAM J. Numer. Anal. 29 (1992), 647-678. 

8. F. Brezzi, On the existence, uniqueness and approximation of saddle point problems arising 
for Lagrangian multipliers, RAIRO Anal. Numer. 8 (1974), 129-151. 

9. F. Brezzi, J. Douglas, Jr., R. Duran, and M. Fortin, Mixed finite elements for second order 
elliptic problems in three variables, Numer. Math. 51 (1987), 237-250. 



1014 L. C. COWSAR, JAN MANDEL, AND M. F. WHEELER 

10. F. Brezzi, J. Douglas, Jr., M. Fortin, and L. D. Marini, Efficient rectangular mixed finite 
elements in two and three space variables, RAIRO Model. Math. Anal. Numer. 21 (1987), 
581-604. 

11. F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed finite elements for second 
order elliptic problems, Numer. Math. 47 (1985), 217-235. 

12. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in 
Comput. Math., vol. 15, Springer-Verlag, New York, 1991. 

13. P. G. Ciarlet, The finite element method for elliptic problems, Stud. Math. Appl., vol. 4, 
North-Holland, New York, 1978. 

14. L. C. Cowsar, Domain %decomposition methods for nonconforming finite element spaces of 
Lagrange-type, Sixth Copper Mountain Conference on Multigrid Methods (N. D. Nelson, 
T. A. Manteuffel, and Si. F. McCormick, eds.), NASA CP 3224, Hampton, VA, 1993, pp. 
93-109. 

15. , Dual-variable Schwarz, methods for mixed finite elements, Numer. Math., submitted. 

16. L. C. Cowsar and M. F. Wheeler, Parallel domain decomposition method for mixed finite 
elements for elliptic partial differential equations, in Glowinski et al. [21], pp. 358-372. 

17. Y.-H. De Roeck and P. Le Tall.&, Analysis and test of a local domain decomposition 
preconditioner, in Glowinski et al. [21], pp. 112-128. 

18. L. J. Durlofsky and M. C. H. .Chien, Development of a mixed finite-element based 
compositional reservoir simulator, Proceedings 12th SPE Symposium on Reservoir 
Simulation, SPE, Inc., 1993, Society of Petroleum Engineers, pp. 221-231. 

19. G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, A users' guide to PICL: A 
portable instrumented communication library, Tech. Rep. ORNL/TM-1 1616, Oak Ridge 
National Laboratory, Aug. 1990. 

20. R. Glowinski et al., eds., Proceedings of the First International Symposium on Domain 
Decomposition Methods fort Partial Differential Equations, SIAM, Philadelphia, PA, Jan. 
1987. 

21. , eds., Proceedings of The Fourth International Symposium on Domain Decomposition 
Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1991. 

22. R. Glowinski and M. F. Wheeler, Domain decomposition and mixed finite element methods 
for elliptic problems, in Glowuoski et al. [20], pp. 144-172. 

23. J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, 
Springer-Verlag, Berlin and New York, 1972. 

24. J. Mandel, Balancing domai-h decomposition, Comm. Appl. Numer. Methods 9 (1993), 233- 
241. 

25. J. Mandel and M. Brezina, balancing domain decomposition: theory and performance in two 
and three dimensions, Report No. 2, Center for Computational Mathematics, University of 
Colorado at Denver, 1993. 

26. J. Necas, Les methodes directes en theorie des equations elliptiques, Academia, Prague, 1967. 

27. J. Nedelec, Mixed finite elements in JR , Numer. Math. 35 (1980), 315-341. 

28. P. A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic 
problems, Mathematical Aspects of Finite Element Methods (I. Galligani and E. Magenes, 
eds.), Lecture Notes in Math., vol. 606, Springer-Verlag, Berlin, 1977, pp. 292-315. 

29. T. F. Russell and M. F. Wheeler, Finite element and finite difference methods for continuous 
flows in porous media,4 Mathematics of Reservoir Simulation (R. E. Ewing, ed.), SIAM, 
Philadelphia, PA, 1983, ch. II, pp. 35-106. 

30. J. M. Thomas, Sur l'analyse numerique des methodes d'elements finis hybrides et mixtes, 
these d'etat, Universite Pierre et Marie Curie, Paris, 1977. 

31. A. Weiser and M. Wheeler, On convergence of block-centered finite difjerences for elliptic 
problems, SIAM J. Numer. Anal. 25 (1988), 351-357. 



BALANCING DOMAIN DECOMPOSITION 1015 

32. 0. B. Widlund, An extension theorem for finite element spaces with three applications, 
Numerical Techniques in Continuum Mechanics (W. Hackbusch and K. Witsch, eds.), 
GAMM, 1987, pp. 110-122. 

33. , Iterative substructuring methods: Algorithms and theory for problems in the plane, in 
Glowinski et al. [20], pp. 113-128. 

DEPARTMENT OF COMPUTATIONAL AND APPLIED MATHEMATICS, RICE UNIVERSITY, HOUSTON, 

TEXAS 77251-1892 
Current address: AT&T Bell Laboratories, Room 2C-302A, 600 Mountain Avenue, Murray Hill, 

New Jersey 07974 
E-mail address: cowsarPresearch. att. com 

CENTER FOR COMPUTATIONAL MATHEMATICS, UNIVERSITY OF COLORADO AT DENVER, DENVER, 

COLORADo 80217-3364 
E-mail address: jmandel@colorado. edu 

DEPARTMENT OF COMPUTATIONAL AND APPLIED MATHEMATICS, RICE UNIVERSITY, HOUSTON, 

TEXAS 77251-1892 
E-mail address: mf wDrice. edu 


